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An optimal program distribution of the finite number of impulse feed -in in- 
stants for one of the players is constructed in an isotropic impulse-differential 
game. Sufficient uniqueness conditions for this sequence are given. The 
game examined in the paper can also be treated as the problem of optimal 

multi-impulse correction of motion. The paper continues the research in 
[l - 3 ] and in subject matter is similar to [4 - 61. 

1. Statement of the problem. Let the motions of two controlled objects 
(players) X and Y on a fixed time interval [to, 2’1 be prescribed by the dif - 
ferential equations with initial conditions 

x: 5’ = cp (t) U, 2 (t,) = i (1.1) 

Y: y’ = g (t) v, y (t,) = y” 

Here x and y are the phase vectors of players X and Y , respectively, and u 
and v are their control vectors, The dimensions of vectors 2, y, u and V are the 

same and are arbitrary. The scalar functions cp (t) and 9 (t) are prescribed, con- 
tinous , nonnegative on the motion interval [to, T] and are not identically zero. We 
assume that player X controls his own motion only at discrete instants tlcr k = 1, . 

. *, n, by feeding in impulses with limited total resource, while player Y controls 
his own motion on the whole interval [to, 2’1. The following constraints are imposed 
on the realizations of the controls of players X and Y and on the instants t, : 

z-5 (t) = jl %4 v - tkb &%l<Q (1.2) 

t, < t, < . . . < tn < tn+l = T (183) 

1 v (t) 1 < 1, t E [to, Tl (1.4) 

Here 6 (t) is the delta-function, Q > 0 is the total resource of player X ‘s im- 
pulse control. The strict inequalities in (1.3 ) do not restrict the generality since the 
feeding in at certain instants tK of ,! + 1 successive impulses of intensities nkt . 

Thui , $$er 
is equivalent to the feeding in of one impulse of intensity nk + . . . + u,k+[. 

X ‘s phase vector undergoes jumps of magnitude cp ( tk) uk at instants 
t,, k=l, . . . . n, that are assumed fixed for the time being. Player X strives 

to minimize the distance between the players at the final instance T, i. e., the func- 
tional 

J = I 5 (T) - Y (0 I (1.5) 

Player Y obstructs this by realizing integrable controls v (t) subject to constraints 
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(1.4) ; such controls are said to be admissible and are denoted by v for brevity. 
We introduce the notation 

xk = x(t, - o), yk = y (tk- o), kg2 ,..., n (1.6) 

51 = 5 (tl - Oh Yl = Y 01 - 01, h> h 
x1 = 5 (to) = a?, Y, = Y (to) = YO, tr = to 

By gr we denote player X ‘s control resource available before the k -th impulse 

(J..7) 

The totality Of quantities fzk, Ek, a) that completely characterized the State Of 
objects (1.1) immediately before the feeding in of the k -th impulse at the instant 

tk - 0 is called a position. 
We assume that before each impulse is fed in player X observes the position 

realized and chooses the jump vectors in the form of functions nk = UyC (zk, yk, qk), 
k = 1, . . . , n, i.e., applies a position control. Since qk is the amount of 

available resource, the functions indicated must satisfy the constraint 

] %c b, Y, d I =G q, li=f,...,lL (1.8 1 

for any 5 and y. It is obvious that it suffices to determine the third argument g of 
the function ult (x, y, q) within the range 0 \< q < Q. The aggregate of func- 
tions uk (g, 3, q), k = 1, . . . , n, satisfying constraint (1.8 ) is called an admis- 
sible strategy of player X and for brevity is denoted by u. To each pair (u, u) 
consisting of an admissible strategy u of player X and an admissible control V of 
player Y corresponds a unique solution of Eqs. (1.1) and a value J fu, v] of 
functional (1.5 ), 

Problem 1. Find the optimal guaranteeing strategy u* of player X and the 
minimum guaranteed value J* of functional (1.5 ) , satisfying the relation 

J* = min, sup,, J In, VI = sup$ [a*, VI (1.9) 

The minimum here is computed over all admissible strategies and the upper bound is 
computed over all admissible controls. 

Using the variable s (t) = 2 (t) - y (t) t the equation of motion with initial 
conditions (1.1) and the functional (1.5 ) are rewritten as 

25’ = cp (t) u - g (t) v, 2 (to) = z* = x0 - y”; J = { z (T) 1 
(1.10) 

The vector V in (I, 10) can be treated as an unknown per~rbance subject to constraint 
(1.4) and the vector u can be treated as a correcting impulse control of form (1.2)) 
(1.3 ). Then the game Froblem 1 is also a problem on the optimal minimax correction 
of the motion of ( 1.10 ) L having the purpose of minimizing the final miss z ( T) (I: 1,2 ] > . 
With the aid of (1.10 ) we can perceive that the optimal strategy u* belongs to the 
class of strategies of the form uk (2, q), 2 = 5 - Y, k = 1, . . . , n. 

2. Equivalent multistep game. We introduce the notation 
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Zk = Xk - ga. k=O,...,n+l 

We assume in addition that the inequality q (t) > 0 holds onsomeinterval (2’ - 8, 
??), 8 > 0. It then follows from (2.1) that p (t) > 0 for t, < t < T, p (T) = 0. 
Only’the variables 2% and qk are used for co~~c~g the optimal strategy in 
Problem 1 and the game% result. Therefore, we can restrict our attention to the fol- 
lowing multistep game (see [3]) with phase variables zk and qr and controls uk 
(of player X ) and 0, (of player Y ) 

Zk+l = zk -t- qkUk - h - Pk+l) vkc !?k+l = qk - 1 uk ] 

J = 1 z,t.+l), z. = 2, go = Q, u. = 0 
(2.2) 

1 @k 1 < ‘?kt f uk 1 d $9 (Pk = 9 ttk)t Pk = p ffk), k = 0,. . . , 8 

The dynamic equations are obtained by integrating relations (1.10 ) and using equal - 
ities (1.7 ) . The equality u. = 0 in (2.2 ) reflects the fact that up to the instant 

t1 player X does not control his own motion. Player X ‘s strategies in game 
(2.2) are analogous to those described above ; every seqnence of vectors vk, 1 vk f < 
1, k = 0,1, . . . , n, serves as a control of player Y . Game (2.2 ) is equivalent 

to the original irn~~e-~ff~~tial game (and to the correction game (I. 10) ) in the 
following sense. The equalities 

k+1 

Ifk = bk - Qk+J1 k=S?,i....,n (2.3) 

establish a one-to-one correspondence between the controls v (t) in the original game 
and the controls Vg in game (2.2),such that one and the same sequences zk, k = 
0 * * t n+l and 1 c~equ~Uy , equal values of the ~nctional , are realized in 

bok*games for every strategy of player X . 
We introduce into consideration the Bellman function & (2, q), k = 0, . , . , 

n+l I equal to the m~mum guaranteed value of functional 1 zntl 1 m&r the 
condition that the multistep game (2.2 ) star+~ at the k 0th step from the point zk = z 
with player X ‘s control resource reserve equalling q. In particular, So (z’, Q) = 

J*, where J* is defined in (1.9 ). The Bellman function satisfies the following re- 
currence relation wit31 boundary condition [3]: 

sk (zkr qk) = min max s&1 t’k+l’ qk+l) 
Iuki,&kIwktG1 

(2.4) 

k=O,l,...,n, &t1tZ7t+1, Qn+J=l&+~l 
Player X ‘s optimal strategy (the solution of problem 1) yields the m~mum 

in (2.4 ) . We determine the quantities cpk* by the equalities 

(2.5) 
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L e m m a I l Recurrence relations (2,4 ) have the unicpre solution 

f k, m 

m=k,...,n, fk,ml=pnv k=Q,...,n 

PZaytX X ‘s optimal strategy is determined by the equalities 

The lemma can be proved by mathematical induction, using (2.4 ) , 
Player Y ‘s optimal control in (2,2 ) (the worst one from player X ‘s view - 

point ) is found during the computatian of the maximum in (2.4 ) and is 

uk* = et .zk+-~pk ~0; k=O,...tn 

( e is an arbitrary unit vector) , 
From (I, 10) we obtain 

We derive player Y ‘s optimal control in terms of the original game by using rela - 
tions (2,3), (2.8) and (2.9): 

’ (‘k $ ‘) 
?I* @) = - 1 z it $0) 1 ? z @k -t- O) +O 

k 
(2.10 > 

u* @I = 0, z (tk + 0) = 0, t E f&, ikJ, k = 0, I,, * I, n 

3, OptXmiaation of the impulrc feed-in inrttantr, Formula (2,6) 
with k=O, z = z0 and q = Q determines the minimal value of functional 
(1.5 ) ) guaranteed to player X L for an arbitrary program (specified before the start 
of the game) distribution of impulse feed-in instants. 

Problem 2. Find the optimal program sequence of instants tk*, k = 
1, . . . , n, such that under constraints (1.3 ) 

min J* = J” 
tti,..., tn) 

(3.1) 

The minimum in (3.1) exsists on the closure of set (1.3 ) since the quantity J* = 
S, (C, @in (2.6 f is a continuous function of variables t,, . . . ) tn. If the mini - 
mum in (3.1) is reached at a boundary point of set (1.3 ) , then q as fdiows from the 

remark in Sect. 3, we can find another minimum point satisfying conditions f 1.3 1. 
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By t, we denote the point of maximum of function cp (t) on interval [to, T] , 
closest to instant T 

maxt cp (t) = q CL*), 6, < t < T (3.2) 

Using formula (2.6) we can show that the magnitude of J* for some sequence t,, . 

* * 9 tn does not increase if all the instants t, lying in the interval [to, ta] 
combine with instant t,. Consequently, the optimal sequence t,* is found among 
the sequences satisfying the condition 

t, < t, < . . - < t, .< tn+l = T (3.3) 

Then the minimum in (3.1) under constraints (1.3 ) coincides with the minimum un - 
der constraints (3.3 ) . 

Let us show the ranges of the parameters, for which the minimum in (3.1) is easily 

computed. More precisely, let the inequality 

r-O - Qq (&) + p (La) - p @*) > 0, r” = 1 z” 1 (3.4) 

be fulfilled. Relations (3.3 ) and (3.4) permit us to establish the estimate 

r” - Qrp (G + P (GJ - P (G > 7.O - QCP (t*) + p (t,) - 

P (t*> > 0 

with whose aid we get that the quantities (2.6 ) satisfy the conditions fa,i > . . . > 
f o,n+1 on any sequence of form (3.3 ). Consequently, we have J* = foal. From 

relations (3.1) -(3,3 ) we then derive 

J” = mint, Ir” - Qq (tJ + p (to)1 = r0 - Qq (t*) + p (to) t,* = t* (3.5) 

Thus, in case (3.4) player X ‘s first impulse should be fed in at instant t,. If player 
Y applied the optimal control (2.9) on the interval [to, t,] , then according to 

(2. ‘7 ) and (3.4 ) player X will have used up all of resource Q on the impulse in- 

dicated . The remaining instants of feeding in the (zero) impulses can be chosen ar - 
bitrarily within the scope of constraints (3.3 ) . 

Now let the inequality 

r0 - Qv (t*) + P (to) - P (t*) < 0 
(3.6) 

opposite to (3.4), be fulfilled. The theorem following below gives an algorithm for 
constructing the optimal sequence under condition (3.6). In the formulation and proof 
of this theorem we introduce the nonnegative functions 

k 

a+( (tl. . . . . tk) = --$ -+ c Pi-1 - Pi 
k=l,...,n (3.1) 

i=l 
‘pi* ’ 

and establish their properties. We examine sequences for which cp (tn) = vn* > 0. 
We note that for finding the quantities qk” by formula (2.5) it is necessary to pre- 

scribe a complete sequence t,, . . . , t,, and to assume that the quantities (& 

are functions of only the first k terms of the sequence. The minima 
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Qlk*(tk)= min a)k(t~,...~t,), t*\(~l\(...Gtk3 k=&...,n 

(h, -.,fkq) (3. S ) 

are reached on the sequence ri’, . . . , tk_l’, possibly not unique, satisfying the 
conditions 

(3.9) 

cpl* > qz” > . . . > Ipk*, k =2, .‘., n (3.10 > 

Using definition (2.5)) from inequalities (3.10 ) we can obtain q (G’) > * - - > 
‘p (&‘) > cp (i!k). Thus , the instants ti’ are distributed in such a way that the se - 

quence of values c$ (ti’) decreases strictly monotonically, Properties (3.9) and (3.10 ) 
of the sequence ti’ can be derived from the inequality 

(3.11) 

valid for the three instants tg, < ti < ti+, for which ‘pi-1 > vi > ‘P;+i* 

We set @$* (tl) = a, (tJ. Using relations (3.7) and (3.8) we can show that 

the functions CD&* (a) do not decrease as f grows, i. e. * 

Q)k* ($1) < @k* (%), $I< $1 k = 1,. . ., n (3.12) 

Let tl’, . . . , tn-lo be a sequence yielding the minimum in (3. d) with t1 = tlD 
and with some r, = t,’ Then,obviously , when tk = tko, k = 2, . . . , n - 1 
minima (3.8 ) are reached on the sequence tlo, . . . , tk_lo and the inequalities 

m’i* w.K~,* (b%c * * - < @,a* W) 
(3.13) 

hold. Using (3. ‘7 ) , the quantities fo,r from formula (2.6 ) can be rewritten as 

Since 

f . 0.k = qpk* t@, (tl, . . . , tk) - Ql + Pk, k = 2,. . . , fz (3.14) 

the minimum in (3.15) isreached onsequence (3.9) yielding the minimum in (3.8 1. 

Theorem 1. Let inequality (3.6) be fulfilled. Then : 

1”. If the inequality 
Q < 0” = fLq a,,* w (3,X) 

holds, the optimal sequence, possibly not unique, satisfies the relations 

a’n* (&I*) = Q 
(3.17 ) 

min a, (tr, . . . , t,_l, ln*) = CD, (fl*, . . . . tn*) 
ff1. . . . . t,_r> (3.18 1 

t, < t1< . . . < L-1 < t,* 
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The quantity Jo = p (a*). 

2”. If the inequalities 

cp (T) > 0, Q > Q (3.19) 

hold, every sequence of form (3.3 ) satisfying the conditions 

@,z (t,, . . . , 6,) < 0, k - T (3.20) 

is optimal. The optimal sequence is not unique under the strict inequality Q > Q” . 
The quantity J” is: 

J” = p (tn*) = p (T) = 0 (3.21) 

Proof. Using (2.6) and (3,3), we transform relation (3.1) to 

J” = min max f,, k = min 
@a, . . . . $J iGk,<n+i 

max {h (Q, P (L>} (3.22) 
t*GndT 

h(L) = min 
(f1, 

max f, r., 
...,f,l) z<k<n ’ 

d* < t1<.. -<&a-1 < tn (3.23) 

Here we have taken into account that f,,++r = p (t& According to (2.1) * p(t,,) 
is a nonincreasing function of tn in the interval ita, 211 and p (T) = 0. Using 

(3.23),(3.6) and(2.6) we find that 

k (t*> = r” - QT (t4;) + P (to) < P t&e) (3.24) 

From the noted properties of the continuous functions h (tn) and p (i?,,) it follows 
that the minimum over the t, in (3.22) is reached either at the point 8% = tn* 
which is the maximum (closest to T ) root of the equation 

h (GJ = p (&I) (3.25) 

or at the point tn = tn * = T. Inequality (3.24) implies the condition &* > &. 
We turn to the proof of statement 1’. We note that Q” = + 00 holds when 

cp(T) = 0 and that the condition Q < 0” is fulfilled for every finite Q. By 

t, = t,,’ we denote the root closest to T of the equation 

By virtue of the monotonicity in (3.12) the root of Eq, (3.26) under conditions (3.6) 
and (3.16) exsists I and t, < tn’ < T, It can be shown that function h (&i) 
satisfies the conditions 

h (tn) = ‘P (tn) M’,n* (tn) - Ql + p (tn), t, < tn < tn’ 
h (tn) > P (t,), t,l’ < t, Q T 

(3.27) 

From formulas (3.27 ) it follows that Eqs. (3.25) and (3.26) are equivalent, i. e., 
ta’ = tn*, since equality (3.25 ) cannot be satisfied when rp (tn) = 0 . There- 

fore,in particular, cp (tn*) > 0. Equalities (3.17 ) and (3.18 ) are proved. The ine- 
quality p (&,*) > 0 follows from the inequality t,* < T noted above. Statement lo 

has been proved. 
To prove statement 2 ’ it remains toabow thatunder conditions (3,19) the minimum 
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in (3.22) over the rn is reached at the point t, = T. Using relations (2.6) and 
(3.22)) we get that the relations foV1 d . . . a fotn < 0, h (2’) < 0 and _P = 

p (Z’) = 0 hold on any sequence tl, . . . , tn of form (3.3 ) satisfying constraints 
(3.20 ) . Conditions (3.20) are satisfied, in particular, by the sequence yielding mini - 
mum (3.18 ) with tn+ = T. For this sequence the inequalities (3.20) and h(T) < o 
are strict when Q > Q” . Therefore, these inequalities are not violated under a 
variation 8tk Of inStam tk, sufficiently small in absolute value, k = 1, . . ., 

n---l . Hence follows the nonuniqueness of the optimal sequence in case (3.19). 

If during the game player Y deviates from control (2.10 ) , then in order to take 
advantage of the opponent’s “failures” player X , before feeding in the next im - 

pulse a must recompute the optimal program distribution of the impulse feed-in instants. 
Such a recomputation can in principle be carried out using the synthesis function 

t,* = fi (r, t, n, Q) equal to the optimal feed-in instant of the first impulse from 
the n impulses at hand,under the condition that the game begins at instant t from 
the point 2 = z - y, 1 2 1 = 7- with player X ‘s resource reserve equal to Q. 
An algorithm for using function 6 has been presented in [l ,2], 

Let us formulate a sufficient condition for the uniqueness of the sequence 

t* t* l,"', n, constructed in Theorem 1. 

L em ma 2. Let the derivatives cp’, cp” and 9’ exist and be continuous in 
the interval (t*, T) and let 

cp’ (4 < 0, cp” (t) < 0, $,’ < 0, t, < t < T (3.28) 

Then the optimal sequence tl*, . . . , t,,* isuniquewhen Q<Q” . 
Using formulas (2.7 ) and (2.10) it can be shown that under the hypotheses of 

Lemma 2 all impulses of player X when player Y uses his optimal control are 

nonzero and are determined by equalities (2.7 ) for the case 1 z 1 < qkq- The 

quantity a,,* (tn*) in Eq. (3.17 ) equals the sum 1 ul* 1 f . . , + 1 u,,* I . From 
(2.9) and (2.7 ) it follows that the equality z (tk* f 0) = 0 holds after each im- 
pulse, i. e., the optimal impulses compensate for the deviations from zero of vector 

z (G. Relations (2.7 ) and (3.17 ) enable us to investigate player X ‘s optimal 

strategy in the limiting case as n 3 00 analogously as shown in [ 11. 

Let us consider game (1.1) - (1.5) from the point of view of player Y, i. e. , the 
maximin problem for functional (1.5). Using (2. lo), we offer the following position 
strategy of player ’ Y: 

v(t) = - 2 (tV Iz 0) l , 2 (t) # 0; v (t) = e, 2 (t) = 0 (3.29) 

It can be shown that this strategy guarantees player Y a value of functional (1.5 ) 

not less than the J* in (1.9) at the fixed instants i$ and not less than the J” in 

(3.1) at the instants not fixed. Thus ,a saddle situation, defined by strategies (2.7 ) 
and (3. 29). exists in the position game (1.1) - (1.5) ; and in the game with nonfixed 

instants tk, ,player X coWructs them by using the synthesis function ti. In other 
words, the minimax in (1.9 ) is permutational even if the minimization is carried out 

also over the instants t, (see (3.1) ). 
We remark that, for example, the dynamic equations in the encounter game for 

objects X and Y, defined by the differential equations Lm (t) z = u and 
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L” (t) y = v , reduce to equations of motion of form (1.1) or (1,J.O). HereLm (t) 
and Lk (t) are linear scaIar differential operators of order m and k. Concrete 
systems of such kind have been investigated in El - 3’~ for m = k = 2 (El1 211 
and for m = 2 and k = 1 ([1,3f), 
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